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ABSTRACT 
Wireless magnetic sensor networks offer a very attractive, low-cost alternative to 
inductive loops for traffic measurement in freeways and at intersections.  In addition to 
vehicle count, occupancy and speed, these sensors yield information (such as non-axle-
based vehicle classification) that cannot be obtained from standard loop data. Because 
such networks can be deployed in a very short time, they can also be used (and reused) 
for temporary traffic measurement.   

This paper reports the detection capabilities of magnetic sensors, based on two field 
experiments.  The first experiment collected a two-hour trace of measurements on Hearst 
Avenue in Berkeley.   The vehicle detection rate is better than 99 percent (100 percent for 
vehicles other than motorcycles); and estimates of average vehicle length and speed 
appear to be better than 90 percent.   The measurements also yield inter-vehicle spacing 
or headways, which reveal such interesting phenomena as platoon formation downstream 
of a traffic signal. 

Results of the second experiment are preliminary.   Sensor data from 37 passing vehicles 
at the same site are processed and classified into six types.   Sixty percent of the vehicles 
are classified correctly, when length is not used as a feature.   The classification 
algorithm can be implemented in real time by the sensor node itself, in contrast to other 
methods based on high scan-rate inductive loop signals, which require extensive offline 
computation.  We believe that when length is used as a feature, 80-90 percent of vehicles 
will be correctly classified.   
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1. INTRODUCTION 
Wireless magnetic sensor networks offer a very attractive alternative to inductive loops 
for traffic measurement in freeways and at intersections in terms of cost, ease of 
deployment and maintenance, and enhanced measurement capabilities.  These networks 
consist of a set of sensor nodes (SN) and one access point (AP).  A SN comprises a 
magnetic sensor, a microprocessor, a radio, and a battery.  Each SN is encased in a 5”-
diameter ‘smart stud’ that is glued to the center of a lane.   

A SN is self-calibrating. Sensor measurements are processed within the SN and the 
results are transmitted via radio to the AP, located on the roadside.  The AP, housed in a 
3”x5”x1” box attached to a pole or the controller, comprises a radio, and a more powerful 
processor.  It processes the data received from the SNs.  The results are sent to a local 
controller or to the TMC.  The AP is either line- or solar-powered.  Figure 1 shows how 
such a network might be deployed.  The little circles are the SNs, the square is the AP. 

Wireless sensing has the potential to revolutionize the way information is collected for 
various transportation applications by providing measurements with high spatial density 
and accuracy. A network of wireless magnetic sensors offers much greater flexibility and 
lower installation and maintenance costs than loop, video and radar detector systems. The 
suitability for large-scale deployment of such networks makes it possible to collect traffic 
data that are presently not available, but are needed to analyze and control a 
transportation system. The availability of these data generates a new window of research 
opportunities for signal processing, communications, traffic operations and control.  

The paper focuses on the extraction of information from experimentally obtained 
magnetic measurements. A sensor network implements two functions: detection and 
measurement, and communication. Communication is discussed in [1]. The paper 
discusses the experiments and how well a magnetic sensor can detect vehicles and 
estimate various traffic parameters. 

Two experiments were performed.  The first provides a two-hour trace of measurements 
on Hearst Avenue, Berkeley, CA, downstream of a signalized intersection. In all 332 
vehicles were observed. The results are excellent: detection rate of 99% (100% if 
motorcycles are excluded), and average vehicle length and speed estimates that appear 
better than 90%.  Because the sensor detects individual vehicles rather than 30-sec 
averages, analysis yields additional information, such as inter-vehicle headways and the 
formation of platoons downstream of a signal. 
 
The second experiment is more limited and the results are less definitive.  Magnetic 
‘signatures’ from 37 vehicles are processed to classify them into six types.  The algorithm 
achieves a 60 percent correct classification rate in real time, without using vehicle length.  
The correct classification rate should increase to 80-90 percent after incorporating length.   
Sections 2 and 3 present the results of the experiments.  Section 4 compares magnetic 
signatures with high scan-rate inductive loop signatures.  Section 5 discusses the results 
and outlines future work.  Section 6 concludes the paper. 



2. VEHICLE DETECTION 
One sensor node was placed in the middle of one lane of Hearst Avenue, Berkeley, CA, 
on February 23, 2004, 8-9 pm.  Ground truth was established by a visual count. In all 332 
vehicles were observed: Passenger vehicles (248); SUVs (48); Vans (18); Mini-trucks 
(9); Buses (4); and Motorcycles (5). 

Detection rate  
The node detected 330 (99%) vehicles.  The two undetected vehicles were motorcycles, 
so all non-motorcycle vehicles are detected.  A motorcycle that passes near the node is 
detected, so placing two nodes will ensure motorcycle detection. 

The sensor measures mag(z), the magnetic field in the vertical direction, sampled at 
128Hz, or 128 times per second.  The samples are compared with a threshold, resulting in 
a sequence of 1’s and 0’s.  If 10 successive values are 1 (above the threshold), vehicle 
detection is declared.  When the sample values subsequently fall below the threshold for 
0.25s, the vehicle is declared to have passed the sensor.   The state machine coded in the 
SN processor sets a detection flag whose value is 1 for the time during which a vehicle is 
above the sensor, and whose value is 0 otherwise.  Figure 2 displays the raw samples 
(left) from the passage of a single vehicle and the corresponding detection flag (right). 

Vehicle arrivals   
As successive vehicles pass over the sensor, the detection flag produces a corresponding 
sequence of pulses.  When the flag switches from 0 to 1 is its uptime, and when it 
switches from 1 to 0 its downtime.  The interval between an uptime and the subsequent 
downtime is the ontime.   

At a finer scale Figure 2 would show that the uptime occurs within 10 samples, i.e. in less 
than 0.1s immediately after the front of the vehicle just crosses the sensor.  Thus the 
presence of a vehicle can be reported within 0.1s to the controller.  The sum of the 
ontimes over a 30s interval divided by 30 is the occupancy of a loop detector.    

Thus a single sensor node produces measurements obtained from a single inductive loop 
in signal control and freeway traffic monitoring applications.  Moreover, these 
measurements are made without a detector card used by a loop detector.   

In fact, more information can be extracted because each vehicle is individually measured.  
Each uptime indicates the arrival of a vehicle at the sensor.  Figure 3 is a plot of vehicle 
arrivals during the first 10 minutes.  (The entire two hour-long trace is not plotted, 
because the scale would be too small.)  Each cross is the time when a vehicle crosses the 
node.  The arrivals are bunched together in ‘platoons’ formed by the clearing of the queue 
behind the signal during each green phase.  Successive platoons are one minute apart, 
which is the cycle time.  The variability in platoon size implies that traffic is not 
saturated—the queue is cleared during each green phase.  Typical signal control detection 
systems do not measure traffic downstream of a signal.  But the figure shows that such 
measurements can reveal how well the signal plan is adapted to the traffic demand.  The 
information in the figure is produced in real time by the sensor node itself, with no 
additional processing.   



The sensor nodes can be deployed in an arbitrary configuration to collect information for 
adaptive signal control [13]; for example, queue lengths at intersections can be measured 
by placing SNs as far upstream of the signal as needed.   

Average vehicle length and speed  
The ontime or interval between successive uptime and downtime of the detection flag is 
the time during which a vehicle is above the sensor.  Consider n successive vehicles, with 
measured ontimes nttt ,...,, 21 .  (To fix ideas, take n = 11, for reasons argued by Coifman 
et al. [3].)  Suppose the unknown lengths of these vehicles (in meters) are nlll ,...,, 21 , and 
their (assumed) common but unknown speed is v (m/s).  The n+1 unknowns 

nlll ,...,, 21 and v satisfy n equations, 

(1) nivtl ii ,...,1, =×= . 

If the distribution p(l) of vehicle lengths is known, one can obtain a maximum likelihood 
estimate of the vehicle speed v) , and the vehicle lengths  

(2) nivtl ii ,...,1,ˆ =×=
)

. 

As shown in [3], a robust estimate of the speed v is easily calculated as 

(3) 
t
lv = ,  

wherein l is the median vehicle length and t is the median of the n observed ontimes 
nttt ,...,, 21 .  We adopt this procedure, choosing n = 11 (as suggested in [3]) and also n = 

5, for purposes of comparison.  We take the median vehicle length as =l 5 meters.   

Figure 4 displays the 5-point and 11-point median vehicle speed estimates.  The 11-point 
estimate is smoother as expected.  With traffic flowing at 330 v/hr, the passage of 11 
vehicles takes about 2 minutes, so the 11-point estimate corresponds to a 2-min average.  
Under a heavier traffic flow, say 2,000 v/hr, this would be a 20-second average. 

The headway is obtained if we subtract from the uptime (arrival) of a vehicle the 
downtime (departure) of the preceding vehicle.  Figure 5 plots the headway in seconds 
for the first 10 minutes: The signal light creates departures in platoons, separated by large 
headways. 

Using the speed estimate v  for v)  in (2) the vehicle length estimates are 

(4) nivtl ii ,...,1, =×=
)

. 

Figure 6 is the resulting frequency distribution of vehicle lengths.   

Accuracy of estimates   

For freeway data, Coifman et al. [3] find the standard deviation (σ) of a 10-point median 
speed estimate to be 2.5 mph.  So with 0.95 probability the estimates differ from the true 
average speed by less than 2σ or 5 mph.  We can measure the speed of an individual 
vehicle by placing two sensor nodes at a known distance.  These measurements will be 
carried out in the future. 



A better estimate of speed and length is provided by a maximum likelihood estimate, 
which requires knowledge of the length distribution p(l). Alternatively, one can estimate 
this distribution, together with the speed.   

 

3. VEHICLE CLASSIFICATION   
One can estimate volumes of long vehicles (trucks) and short vehicles (cars) from 30-
second average single-loop measurements of occupancy and counts [5][6].  However, 
classification of individual vehicles requires finer measurement.   

This section reports results of a simple classification scheme based on a single dual-axis 
magnetic sensor, which measures the earth’s magnetic field in both the vertical direction 
(mag(z)) and along the direction of the lane (mag(x)), each sampled at 64Hz or 64 times 
per second.   A vehicle’s samples (signature) are processed and two pieces of information 
are extracted.  First, the rate of change of consecutive samples is compared with a 
threshold and declared to be +1 (–1) if it is positive and larger than (or negative with 
magnitude larger than) the threshold, or 0 if the magnitude of the rate is smaller than the 
threshold.  The result is a ‘hill pattern’ of ‘peaks’ and ‘valleys’ in the vehicle’s mag(z) 
and mag(x) signature.  The second piece of information is the largest value of the 
samples.  Although in the results reported below, the information was generated off-line, 
it can be extracted in real time by the sensor node itself.  Information about vehicle length 
is not used. 

A simple algorithm uses the information to classify the vehicle into six types: passenger 
vehicles (1), SUV (2), Van (3), Bus (4), mini-truck (5), truck (6), and other (7). 

Figure 7 displays the signature and hill pattern from four passenger vehicles (PV).   There 
are six plots per vehicle.  The top row shows the signature, mag(z) and mag(x).  The 
second row is the hill pattern.  In each case the mag(z) profile shows a single ‘peak’ 
constituting the hill pattern (+1,–1) or one positive slope followed by one negative slope.  
In each case the mag(x) profile shows one ‘valley’ followed by one ‘peak’ constituting 
the hill pattern (–1,+1,–1). The third row gives the outcome of the algorithm, which 
classifies the signature into seven types.  In each case the algorithm correctly decides that 
it is a passenger vehicle (type 1). 

Figure 8 displays the signature, hill pattern and classification of four SUVs.  In three 
cases (top two and bottom right) the patterns of both mag(z) and mag(x) are different 
from the passenger vehicle pattern of Figure 7.  These patterns are (–1,+1,–1) and (+1, –
1, +1, –1) respectively, both different from the type–1 pattern.  However, the vehicle on 
the bottom left is misclassified as a passenger vehicle, because the initial negative slope 
of mag(z) is too small in magnitude to cross the threshold, and mag(x) does not show the 
initial positive slope of the three other signatures.   

The misclassification may be due to several reasons.  The two peaks in mag(x) in the 
three correctly classified SUVs are due to two masses of steel (ferrous material) separated 
by a significant gap.  Such a distribution of steel is not detected in the misclassified SUV.  
A higher sampling rate might reveal the ‘missing’ peak.  It is also possible that this SUV 
is built differently from the others, making its signature similar to that of a passenger 
vehicle.  Also, a lower mag(z) threshold would reveal the small valley that is visible in 



the raw samples.  Lastly, if SUVs are longer than passenger vehicles, using length as a 
feature might lead to a correct classification. 

Figure 9 displays the signature and hill pattern for four vans.  Three vehicles are correctly 
classified as Type 6, and one is misclassified.  The van hill pattern for mag(z) is (+1,–
1,+1,–1) and for mag(x) is (–1,+1,–1) (the same as that of a passenger vehicle).  The 
mag(z) pattern for the misclassified vehicle does have the two peaks, but the first peak is 
too small to cross the threshold .  Again, incorporation of length might have helped.   

Similar hill patterns are obtained for the two remaining classes, buses and mini-trucks 
(MT). 

Table 1 indicates that 24 out of 37 vehicles (63 percent) are correctly classified.  The 
FHWA vehicle class 2 combines PV and SUV, class 3 combines Vans and MT, and class 
3 comprises buses.  From Table 1 we can see that 31 out of 37 vehicles (83 percent) are 
correctly identified in terms of the FHWA classes.  Although the sample size is too small 
to make any firm judgment, the technique is very promising and suggests two tentative 
conclusions. 

First, buses, vans and passenger vehicles are all correctly classified.  The troublesome 
vehicles are SUVs and mini-trucks.  The data do not contain any trucks, and further 
experiments will tell how well their signatures are distinguishable. 

Second, the classification uses measurements from a single sensor, without using length 
as a feature, and the algorithm can be implemented in real time.  All loop detector 
signature-based classification schemes reviewed in the next section require two loops (to 
extract speed and hence length) and require off-line computations. 

 

4. COMPARISON WITH LOOP SIGNATURE-BASED CLASSIFICATION 
We compare magnetic signature-based classification with three studies that use signatures 
from inductive loop signals scanned at a high rate (about 140 Hz).  A survey of studies 
that use inductive loop signatures is provided in [2].   

The studies use seven categories, slightly different from each other and from Table 1.  
The loop-based studies are all based on pattern recognition methods.  All these studies 
use length as an important feature. 

Two sets of schemes are tested in Sun [2]. The first, called ‘decision-theoretic’ methods, 
uses the features of length, largest magnitude of the measured inductance, variance and 
skewness (defined as the third or fourth central moment of the signal).   

Significant pre-processing of the raw data is needed to extract the features.  As explained 
in [2], [9]: (1) the signal magnitude must be normalized; (2) the ontime must be 
multiplied by speed to convert the time axis into length; and (3) a spline function must be 
interpolated through the raw samples and the result re-sampled so that each signature has 
an equal number of sample points.   

The decision-theoretic methods use a heuristic ‘decision tree’ like the one shown in 
Figure 12.  The procedure works as follows.  The six thresholds 61 b,...,b are selected to 
give the best results for a ‘training set’ of vehicles.  Length is compared with four 



thresholds 41 b,...,b to give five regions, namely, ),b(),b,b(),b,b(),b,b(),b,( ∞443322110 .  If 
the length falls within the middle three intervals, the vehicle is immediately classified as 
Type 3, 4 or 5.  If the length falls into the first interval, it is classified Type 1 or 2, and the 
magnitude of the signal is then compared with 5b to resolve its type (1 or 2).  Similarly, if 
the length is larger than 4b , it is classified Type 6 or 7, and the ambiguity is resolved by 
comparing its skewness with the threshold 6b .  Evidently, length plays a dominant role in 
the classification. 

The second set of classification schemes in [2] uses a neural network with additional 
features, including Discrete Fourier Transform and Karhunen-Loeve Transform 
coefficients.  The final scheme uses a total of 51 features.  Extracting these features 
requires much computation. 

These schemes correctly classify 80 percent of the vehicles.. 

In summary, it appears that magnetic signatures are better than inductive-loop signatures 
in terms of (1) computational burden, (2) improved sensitivity (speed and length are not 
used), and (3) implementation. The improved sensitivity is explained next. 

Magnetic sensor vs. inductive loop measurements 
The sensor node uses the HMC 1001/1002 Honeywell chip, whose magneto-resistive 
sensors convert the magnetic field to a differential output voltage, capable of sensing 
magnetic fields as low as 30 µgauss 0.  (The earth’s field is between 250 and 650 
mGauss.)  Ferromagnetic material, such as iron, with a large permeability, changes the 
earth’s magnetic field.  The voltage change is sampled at 128Hz to give the signature.   

The magnetic field is a three-dimensional vector. The vehicle detection experiment uses 
only the field in the vertical direction, mag(z); vehicle classification is based on both 
mag(z) and mag(x)—the change along the direction of the vehicle’s motion. Figures 7–9 
show some signatures. 

The magnetic sensor is passive, and energy is consumed in the electronic circuit that 
measures the change in the resistance and the A/D conversion.  By contrast, the inductive 
loop is an active device: a 6’ by 6’ copper loop is excited by a 20kHZ voltage, creating a 
magnetic field. Conducting material passing over the loop lowers the inductance. The 
loop detector card measures the change in the inductance.  Special high scan-rate detector 
cards used for vehicle classification sample the inductance at about 140Hz. 

The tiny magnetic sensor measures a highly localized change.  As the vehicle travels over 
the sensor, it records the changes in the fields caused by different parts of the vehicle.  By 
contrast, the 6’ by 6’ standard loop geometry results in the “integration of the inductive 
signature over the traversal distance … which can remove distinctive features from the 
inductive signature” [4, emphasis added]. So the standard loop is not ideal for vehicle 
classification.  Figure 13 reproduces the inductive loop signatures of a pickup truck and a 
passenger car.  Magnetic signatures clearly provide much more detail. 

 



5. DISC USSION AND FUTURE PLANS 
The limited experiments reported here suggest that a magnetic sensor provides count 
accuracy exceeding 99 percent, and average vehicle speed and length estimates better 
than 90 percent.  Moreover, a single (dual-axis) sensor can classify six types of vehicles 
with accuracy better than 60 percent.  We believe that if two sensors are used, individual 
vehicle speeds can be very accurately measured, and vehicles can be classified with 
accuracy better than 80 percent.  Significantly, all these estimates can be carried out in 
real time. 

An earlier study [1] described a communication protocol that consumes so little power 
than a sensor node can be supplied by energy from two AA batteries for more than three 
years.  More careful designs by Sensys Networks, Inc. indicate a lifetime exceeding 
seven years.  (Full disclosure: Pravin Varaiya is a founder of Sensys.) The low-cost, ease 
of deployment and maintenance, and greater information of these sensor networks, 
suggest that they can serve as a foundation for an accurate, extensive, and dense traffic 
surveillance system. 

For the immediate future, we plan to work in several directions.  Experiments with two 
nodes six feet apart indicate speed estimates with an accuracy exceeding that obtained by 
a video camera (because the nodes provide a resolution of 128Hz vs. the 30Hz video 
frame rate).  We will soon conduct extensive tests on freeways and arterials and compare 
the results with loop and video measurements.  Accurate speed measurements yield 
accurate vehicle length.  We will characterize the improvement in vehicle classification 
using length as a feature.  We have obtained truck measurements at a weigh-in-motion 
station.  We are developing a classification algorithm based on these data.   

We believe that magnetic sensors can be placed on bridges and overpasses, where it is 
difficult to cut the pavement to install loop detectors.  We plan to conduct such tests.  The 
absence of detectors at these locations (where congestion often occurs) leaves a 
significant gap in freeway traffic monitoring. 

Over the longer term, we will explore other sensing modalities, including temperature 
and fog sensors, and accelerometers.  The interesting thing about the sensor network 
(figure 1) is that the same communication and node architecture can be used to process 
and communicate measurements from different sensors.   

The PeMS project [12] has shown the value of traffic data for measuring and improving 
freeway performance.  The project also shows how difficult it is to maintain California’s 
loop detector system.  Wireless sensor networks may provide the ideal low-cost, accurate 
traffic surveillance system needed to improve our transportation system. 

 
6. CONCLUSIONS 
Vehicle detection systems based on wireless sensor networks are attractive because of 
their low cost, ease of installation and flexibility of deployment.  The paper examined 
their detection capability. The networks provide a detection rate of 99 percent; and 
achieve a 90 percent accuracy in average vehicle length and speed estimates with a single 
sensor. The localized change associated with the magnetic sensor allows us to classify the 
vehicles based on the magnetic signature without incorporating the length with 60 percent 



accuracy. In the future, we plan to continue to work on the classification of the vehicles 
and different kinds of trucks, and perform extensive experiments on urban streets and 
freeways with multiple lanes and higher volumes. 
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TABLE 1 Classification using magnetic sensor 
 

Total PV SUV Van Bus MT Van, 
MT 

 PV      15 11 4     

SUV     7 3 4     

Van      5 1  1   3 

Bus      3    3   

MT       7 4 1   2  

 

 

 



 

 

 

 

 

 

 

 

 

Figure 1 Deploying sensor networks at intersection and freeway 
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Figure 2 Raw samples and detection flag; time (x-axis) is in seconds 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Vehicle arrivals during the first 10 minutes 
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Figure 4 Vehicle speed using 5-point and 11-point median 
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Figure 5 Headway vs. arrival time 
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Figure 6 Frequency distribution of vehicle length (m) 
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Figure 7 Raw samples and hill pattern from four passenger vehicles 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Raw samples and hill pattern from four SUVs 
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Figure 9 Raw samples and hill pattern from four vans 
 

 

 

 

 

 

 

X 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Decision tree for classification into 7 types of vehicles: Source [2] 
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Figure 11 Inductive loop signature from pickup truck (left) and passenger car 
(right): Source [7] 
 

 

 

 

 

 

 

 


